l.l-DISIJBSTITUTED-2,5-CYCLOliEXADIERES: SELECTIVE INHIBITORS OF 5-LIPOXYGENASE

William J. Sipio* E. 1. du Pont de Nemours & Company, Inc. Biomedical Products Department Pharmaceuticals Research and Development Division Wilmington, DE 19898

Abstract: 1,1-Disubstituted-2,5-Cyclohexadienes, modeled after arachidonic acid and 15-HETE, selectively inhibit 5-Lipoxygenase.

A variety of substituted arachidonic acids (AA) have been identified as selective inhibitors of the 5-lipoxygenase pathway of AA metabolism. Via this pathway, the biosynthesis of leukotrienes (LT) is initiated by stereospecific proton abstraction 1 from C-7 of AA. Inhibition of this process may be therapeutically useful in treating inflammatory disease. AA analogs have been designed to function as inhibitors by blockade of proton abstraction from C-7, C-10, and C-13 of AA either by insertion of a gem-dimethyl $^{2-5}$ or cyclopropane $^{\rm 3,6}$ moiety. Using similar reasoning, the spiro-triene 7 was designed as a potential inhibitor of LT biosynthesis. By creating a quaternary center at C-7, we envisioned potential inhibition of 5, 11, and 15-lipoxygenase.

Birch reductive alkylation (Scheme I) of benzoic acid (1) [Li/NH₃:THF (4:1)] with iodoheptane $(-78° \rightarrow -33°C, 2 hr)$ afforded 2. The crude acid 2 was esterified (3) with methyl iodide (K_2CO_3) , Acetone, O°C) and reduced to the alcohol 4 (LAH, Et₂O) in 85% yield. Careful oxidation of 4 (-20°C \rightarrow r.t.) with pyridinium chlorochromate afforded crude aldehyde 5 with no evidence of dienone formation. Treatment of the crude aldehyde 5 with the ylid derived from 4-carboxybutyltriphenylphosphonium bromide (NaH, DMSO, 25°C) afforded acid $\underline{6}^7$ which was directly esterified (CH₂N₂, Et₂O, O°C) producing the ester 1. The ester 1 selectively inhibited the 5-lipoxygenase from RBL-1 cells⁸ (IC₅₀ = 120 WM) while having a negligible effect on prostaglandin synthetase (IC₅₀ >750 μ M).

Having obtained moderate activity with I , we decided to introduce a hydroxy group in the lower chain of I (Figure I) based on a report by Vanderhoek⁹ that $15-(S)$ -HETE is a potent inhibitor of 5-lipoxygenase (IC_{50} =3.7 μ M). Also, the presence of three olefins and an ester function appears to afford maximum inhibitory activity. Our target selection incorporates a hydroxyl function at C-15. ester at C-l, and three Z-olefins at C-5,8.11.

2039

a: 1) Li/NH₃:THF (4:1), -50°C, 1 hr; 2) 1-iodoheptane, 78° \rightarrow -33°C, 2 hr; b: CH₃I, K₂CO₃, Acetone, 0°C; c: LiAlH₄, Et₂0, 0°C; d: PCC, CH₂C1₂, -20°C \rightarrow r.t.; e: NaH, DMSO, HO₂C(CH₂)₄P(C₆H₅)₃Br, 25°C, 6; CH₂N₂, 0°C, Et₂O, <u>7</u>.

Figure I

15-(S)-HETE

Birch reductive alkylation (Scheme II) of benzoic acid (1) (Li/NH₃:THF, 4:1) with epoxyheptane (-78°C + -33°C, 2 hr) afforded the diene $\underline{8}$, which was cyclized to the spirolactone 9 (p-TsOH, Benzene) in 85% yield. Reduction of 9 (DIBAL, -78°C, Toluene) produced the key intermediate lactol 10 in 86% yield. Attempts to convert 10 directly to the ester $\frac{13}{13}$ under a variety of conditions gave low \underline{Z} -stereoselectivity. Alternatively, we chose to use the free aldehyde 12 for conversion to 13 . Treatment of the lactol 10 with

ethanedithiol under acid catalysis (TiCl₄, CH₂Cl₂, O°C) yielded a hydroxy dithiolane (70%), which was silylated under standard conditions (imidazole, DMF, + Si-Cl) to give 11 (91%). The dithiolane moiety in 11 was removed (CH₃I, CaCO₃, THF) affording the key aldehyde 12 (90%). The aldehyde 12 was treated with the ylid derived from 4-carboxybutyltriphenylphosphonium bromide (NaH, DMSO, 25°C) to give the crude acid, which was esterified (CH₂N₂, Et₂0, 0°C) and desilylated (n-Bu₄NF, THF, 25°C) to yield the ester $\underline{13}^7$ (>95% \underline{z}). Compound 13 also selectively inhibited 5-lipoxygenase (IC₅₀=6 µM) over prostaglandin synthetase (IC_{50} >750 μ M).

 $\underline{a}: 1)$ Li/NH₃:THF (4:1), -50°C, 1 hr; 2) 1-epoxyheptane, -78° \rightarrow -33°C, 2 hr; b: p-TsOH, Benzene, r.t.; c: DIBAL, Toluene, -78°C; d: 1) HS(CH₂)₂SH, TiCl_A, CH₂Cl₂, O°C, 1 hr; 2) Imidazole, DMF, $\left(\text{CH}_3\right)_3\text{CSi}(\text{CH}_3)_2\text{Cl}$; e: CH₃I, CaCO₃, THF; f: 1) $\text{HO}_2^C(\text{CH}_2)_{4}^P(\text{C}_6\text{H}_5)_{3}^P$ Br, NaH, DMSO, 25°C, 3 hr; 2) CH_2N_2 , Et₂0, O°C; 3) n-Bu₄NF, THF, 25°C.

Acknowledsment: Special thanks to Dr. William Galbraith, Senior Research Pharmacologist, E. I. du Pont de Nemours 6 Company, Biomedical Products Department, Experimental Station, Wilmington, DE 19898, for obtaining biological data.

References and Notes

- 1. E. J. Corey and P. T. Lansbury, Jr.; <u>J. Amer. Chem, Soc., 105</u>, 4093 (1983).
- 2. C. D. Perchonock, J. A. Pinkelstein, I. Usinkas, J. G. Gleason, H. U. Sarau, L. B. Cieslinski, Tetrahedron Letters, 1983, 24. 2457.
- 3. Y. Arai, **K.** Shimoji, R. Konno. Y. Konishi, S. Okuyama, S. Iguchi, R. Hayashi, T. Miyamoto, M. Toda, J. Med. Chem., 1983, 26, 72.
- 4. F. Scheinmann, J. Arkrody, A. Manro, <u>Tetrahedron Letters</u>, 1983, <u>24</u>, 5139.
- 5. J. R. Pfister and D. **V. K.** Rurthy, J. Red. Chem., 1983, 26. 1099.
- 6. K. C. Nicolaou, N. A. Petasis, W. S. Li, T. Ladduwahetty, J. L. Randall, S. E. Webber, P. E. Hernandez, J. Org. Chem., 1983, 26, 5400.
- 7. Compounds <u>6</u> & <u>13</u> gave satisfactory IR, 1 HNMR, and mass spectra. $\,$ 6: 1 HNMR (CDCl₃, 360 MHz) δ : 0.87 (t, J=8.0Hz, 3H, CH₃), 1.10-1.63 (m, 14H, CH₃) 2.14 (q, J=8.0Hz, 2H, allylic CH₂), 2.30 (t, J=7.0 Hz, 2H, CH₂CO₂H), 2.58 (m, 2H, diallylic CH₂), 5.32-5.67 (m, 6H, olefin). 13: $\frac{1}{100}$ HMMR (CDCl₃, 200 MHz) δ : 0.95 (t, J=7.0 Hz, 3H, CH₃), 1.16-1.20 (m, 12H, C<u>H₂), 2.08 (m, 2H, allylic CH₂), 2.26 (t, J=7.0 Hz, 2H,</u> CH₂CO₃Me) 2.70 (m, 2H, diallylic C<u>H₂), 3.68 (s, 3H, OCH₂), 3.75 (br m, 1H, CHO</u>H), 5.30-5.82 (m, 6H, olefinic).
- 8. B. A. Jakschik, F. Sun, L. H. Lee, M. M. Steinhoff, <u>Biochem. Biophys. Res. Commun.</u>, 1980, 95. 103.
- 9. J. Y. Vanderhoek, R. W. Bryant, J. M. Bailey, <u>Biochem. Pharmacology</u>, 1982, <u>31</u>, No. 21, 3463.

(Received in USA 26 November 1984)